Automated Avalanche Deposit Mappping from Vhr Optical Imagery

نویسندگان

  • Matthew J. Lato
  • Regula Frauenfelder
  • Yves Bühler
چکیده

Using eCognition we developed an algorithm to automatically detect and map avalanche deposits in Very High Resolution (VHR) optical remote sensing imagery acquired from satellites and airplanes. The algorithm relies on a cluster-based object-oriented image interpretation approach which employs segmentation and classification methodologies to identify avalanche deposits. The algorithm is capable of detecting avalanche deposits of varying size, composition, and texture. A discrete analysis of one data set (airborne imagery collected near Davos, Switzerland) demonstrates the capability of the algorithm. By comparing the automated detection results to the manually mapped results for the same image, 33 of the 35 manually digitized slides were correctly identified by the automated method. The automated mapping approach characterized 201 667 m2, of the image as being representative of a fresh snow avalanche, roughly 8.5% of the image. Through a spatial intersection between the manually mapped avalanches and the automatically mapped avalanches, 184 432 m2, or 89%, of the automatically mapped regions are spatially linked to the manually mapped regions. The rate of false positive was less than 1% of the pixels in the image. The initial results of the algorithm are promising, future development and implementation is currently being evaluated. The ability to automatically identify the location and extent of avalanche deposits using VHR optical imagery can assist in the development of detailed regional maps of zones historically prone to avalanches. This in turn can help to validate issued avalanche warnings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Damage Detection and Visualization Using High-resolution Satellite Data for Post-disaster Assessment

The focus of this study is to thoroughly exploit the capability of very high-resolution (VHR) satellite imagery such as IKONOS and QuickBird for disaster mitigation. An efficient automated methodology that detects damage is implemented to derive the rich information available from VHR satellite imagery. Consequently, the detected results and the VHR satellite imagery are attractively presented ...

متن کامل

Volumetric Forest Change Detection through Vhr Satellite Imagery

Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D fore...

متن کامل

Detection and Animation of Damage Using Very High-Resolution Satellite Data Following the 2003 Bam, Iran, Earthquake

The focus of this study was to thoroughly exploit the capability of very high-resolution VHR satellite imagery such as Ikonos and QuickBird for disaster mitigation. An efficient automated methodology that detects damage was implemented to derive the rich information available from VHR satellite imagery. Consequently, the detected results and the VHR satellite imagery are attractively presented ...

متن کامل

Advanced Methods For Building Information Extraction From Very High Resolution SAR Data To Support Emergency Response

Rapid damage assessment after natural disasters (e.g. earthquakes, floods) and violent conflicts (e.g. war-related destruction) is crucial for initiating effective emergency response actions. Remote sensing satellites equipped with multispectral and Synthetic Aperture Radar (SAR) imaging sensors can provide vital information due to their ability to map affected areas of interest with high geome...

متن کامل

Landslide Mapping in Vegetated Areas Using Change Detection Based on Optical and Polarimetric SAR Data

Mapping of landslides, quickly providing information about the extent of the affected area and type and grade of damage, is crucial to enable fast crisis response, i.e., to support rescue and humanitarian operations. Most synthetic aperture radar (SAR) data-based landslide detection approaches reported in the literature use change detection techniques, requiring very high resolution (VHR) SAR i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012